20 01

Previous editions are obsolete

(· 4

161

TION OF THIS PAGE

LONG PATH CONNECTIVITY OF REGULAR GRAPHS

Cun-Quan Zhang*
Department of Mathematics
West Virginia University
Morgantown, WV 26506

Yong-Jin Zhu
Institute of System Science
Academia Sinica
Beijing, China

Acces	Ion For		
DTIC	o mand		
By Distrib	ution /		
А	vailability (ìodes	-
Dist Avail and/or Special			1
A-I			

ABSTRACT: Any pair of vertices in a 4-connected non-bipartite k-regular graph are joined by a Hamilton path or a path of length at least 3k-6.

*This research was partially supported by AFOSR under grant 89-0068

The topics about Hamilton cycles, circumferences and Hamiltonian connectivities of regular graphs have been interesting many mathematicians in recent years ([2],[1],[4],[7],[3],[6]).

In this paper, we will investigate the length of a longest path joining any pair of vertices of regular graphs and establish the following theorem.

THEOREM 1

Let G be a 4-connected non-bipartite k-regular graph. Then any pair of distinct vertices of G are joined by a Hamilton path or a path of length at least 3k-6.

In a sense, this theorem is a generalization of the rollowing results.

- (i) (Bollobas and Hobbs [1]) Any 2-connected k-regular graph of order at most $\frac{9}{11}$ k contains a Hamilton cycle.
- (ii) (Jackson [4]) Any 2-connected k-regular graph of order at most 3k contains a Hamilton cycle.
- (iii) (Zhu, Liu and Yu [7]) Any 2-connected k-regular graph of order at most 3k+3 contains a Hamilton cycle.
 - (iv) (Fan [3]) The length of a longest cycle in a 3-connected
 k-regular graph of order n is at least min{n,3k}.
 - (v) (Zhang and Zhu [6]) Any pair of vertices of a 3-connected · non-bipartite k-regular graph of order at most 3k-4 are joined by a Hamilton path.

The condition of 4-connectivity in the theorem cannot be reduced. A 3-connected k-regular graph of order 3k+3 containing no path of length at least 2k+3 joining a pair of vertices can be constructed as follows. Let k=3h. Let G_1,\cdots,G_9 be nine disjoint copies of complete graph K_h and

 v_1, v_2, v_3 be three distinct vertices. Join an edge between each pair of vertices in G_{3i+1} G_{3i+2} G_{3i+3} for i=0,1,2, and join an edge between v_j and each vertex of G_{3i+j} for i=0,1,2 and j=1,2,3. The induced graph contains 9h+3 vertices and is 3h-regular 3-connected, in which v_i and v_j are not joined by any path of length longer than 6h+2 for i,j, \in {1,2,3}. (See fig. 1).

Actually, we can establish a result stronger than Theorem 1.

THEOREM 2. Let G be a 4-connected graph and x,y be a pair of distinct vertices of G such that

- (i) d(v)=k for any vertex $v \in V(G) \setminus \{x,y\}$,
- (ii) d(x), d(y) < k.

Then the length of a longest path joining x and y is at least

- (i) min{| V(G) | -1, 3k-6} if G is not a bipartite graph, or G is a bipartite graph and x, y belong to deferent parts of the bipartition of G;
- (ii) $min\{ | V(G)| -2, 3k-6 \}$ if G is a bipartite graph and x,y belong to the same part of the bipartition of G.

Let G=(V,E) be a graph with vertex set V and edge set E. Let $P=u_0\cdots u_p$ be a path of G. For $0\leq i$, $j\leq p$, the segment $u_i\cdots u_j$ of P is denoted by u_iPu_j if $i\leq j$ or $u_i\tilde{P}u_j$ if $i\geq j$. The length of a path P is the number of edges in P and is denoted by $\ell(P)$. Let H be a subgraph of G. Let w,w' be two vertices of H. The length of a longest

path of H joining w,w' is denoted by $L_H(w,w')$. Let v be a vertex of G. The set of vertices of H adjacent to v is denoted by $N_H(v)$ and the number of vertices of $N_H(v)$ is denoted by $d_H(v)$. When V(H)=V(G), we simply write d(v) and N(v) instead of $d_G(v)$ and $N_G(v)$. Let $P=u_0\cdots u_p$ be a path of G and X be a subset of V(P). Denote

$$X^{+1} = \{u_{i+1} = u_i \in X\}$$

and
$$X^{-1} = \{u_{i-1} = u_i \in X\}$$
.

Let E(H,H') be the set of all ordered pairs of vertices (x,y) such that $(x,y)_{\in E}(G)$ and $x_{\in V}(H)$, $y_{\in V}(H')$. And let |E(H,H')| = e(H,H'). Note that if $V(H) \cap V(H') \neq \emptyset$, each edge (x,y) in the induced subgraph $G(V(H) \cap V(H'))$ will counted twice in e(H,H') since the ordered pairs (x,y) and (y,x) are considered deferent in E(H,H'). Thus d(v)=e(v,G) for any vertex v of of G and $\sum_{v\in V(H)} d(v)=e(H,G)$ for subgraph H of G.

PROOF OF THEOREM 2

The theorem will be proved by contradition. Suppose that the length of a longest path $P=v_0\cdots v_p$ joining $x=v_0$ and $y=v_p$ is less than 3k-6 and $G\setminus V(P)$ is not empty.

PART ONE. In this part, we will show that $G\setminus V(P)$ is an independent set of G. The following lemmas will be applied in this part.

LEMMA 1.1. (Lemma 4, [3]) Let H be a 2-connected graph and $Q=u_0\cdots u_q$ be a longest path of H. Then

$$L_{H}(x,y) \geq \min\{d(u_{0}),d(u_{q})\}$$

for any pair of distinct vertices x and y in H.

Let C be a set and $\{A_1,\cdots,A_{\alpha}\}$, $\{B_1,\cdots,B_n\}$ be partitions of C such that $\alpha \geq 2$ and $\|A_{\mu} \cap B_j\| \leq 1$ for any $\mu \in \{1,\cdots,\alpha\}$ and any $j \in \{1,\cdots,h\}$. If

 $B_{i} \cap A_{\mu} \dagger \phi$, $B_{j} \cap A_{\theta} \dagger \phi$ and $B_{i+1} = \cdots = B_{j-1} = \phi$

for some $\mu, \theta \in \{1, \cdots, \alpha\}$ and $\mu \neq \emptyset$, then $\{i, \cdots, j\}$ is called a closed extendible interval of $\{B_1, \cdots, B_n\}$.

LEMMA 1.2 (Lemma 3.2, [6]) Let C be a set, $\{A_1, \dots, A_{\alpha}\}$ and $\{B_1, \dots, B_h\}$

be partitions of C defined as above. If s is an integer such that $\alpha \geq s \text{ and } |A_{\mu}| \geq s \text{ for each } \mu \in \{1, \cdots, \alpha\}, \text{ then } \{B_1, \cdots, B_n\} \text{ has at least } s-1 \text{ closed extendible intervals.}$

Suppose that $G\setminus V(P)$ is not an independent set and let W_0 be a component of $G\setminus V(P)$ which contains at least two vertices. Let T_1,\cdots,T_t be all end-blocks of W_0 . (An end-block of W_0 is a block of W_0 which contains at most one cut-vertex of W_0).

- I. We claim that there exists a longest path $Q_i = x_1^i \cdots x_{q_i}^i$ in each T_i such that
 - (i) $d_{W_0}(x_1^i) \leq d_{W_0}(x_{q_i}^i)$ and x_1^i is not a cut-vertex of W_0 , and
 - (ii) $d_{W_0}(x_1^i)$ is as big as possible.

Let $R=y_1\cdots y_r$ be a longest path in T_i such that $d_{W_0}(y_1) \leq d_{W_0}(y_r)$.

(a). If y_1 is a cut-vertex of W_0 and $d_{T_1}(y_1) \geq 2$, then there is another longest path $y_\mu \bar{R} y_1 y_{\mu+1} R y_r$ or $y_r \bar{R} y_{\mu+1} y_1 R y_\mu$ satisfying (i) for any $y_{\mu+1} \in N_R(y_1) \setminus \{y_2\}$. Of all longest paths in T_1 satisfying (i), let $Q_1 = x_1^i \cdots x_{q_1}^i$ be the one with the largest $d_{W_0}(x_1^i)$. (b) if y_1 is a cut-vertex of W_0 and $d_{T_1}(y_1) = 1$, then $|T_1| = 2$ and $|T_1| = 2$ and $|T_2| = 2$ since $|T_1| = 2$ and $|T_1| = 2$ and $|T_2| = 2$ since $|T_1| = 2$ and $|T_2| = 2$ and $|T_1| = 2$ and $|T_2| =$

II. Let $d=max\{d_{W_0}(x_1^i):i=1,\cdots,t\}$. Without loss of generality, let $d=d_{V_0}(x_1^i).$

- (i) When $d \ge 2$ and $N_{Q_1}^{-1}(x_1^{\dagger}) \cap \{\text{cut-vertices of } W_0\} = \phi$, let $Z = N_{Q_1}^{-1}(x_1)$.
- (ii) When $d \ge 2$ and $x_c^{\frac{1}{2}}$ is a vertex of $N_{Q_1}^{-\frac{1}{2}}(x_1^{\frac{1}{2}}) \cap \{\text{cut-vertices of } W_0\}$.

Let
$$Z=[N_{Q_1}^{-1}(x_1^1)\setminus\{x_c^1\}]\cup\{x_1^2\}.$$

In both cases (i) and (ii), we have that $|Z| = |N_{Q_1}^{-1}(x_1^1)| = d_{W_0}(x_1^1) = d$, and by Lemma 1.1,

$$L_{W_{0}}(z,z') = L_{T_{1}}(z,z')$$

$$\geq \min\{d_{T_{1}}(x_{1}^{1}), d_{T_{1}}(x_{q_{1}}^{1})\}$$

$$= d_{T_{1}}(x_{1}^{1})$$

$$= d_{W_{0}}(x_{1}^{1})$$

for each pair of distinct vertices, $z,z'\in Z$ $V(T_1)$. If $z\in Z\cap V(T_1)$ and $z'\in Z\setminus T_1 \text{ we have that } z'=x_1^2 \text{ and }$

$$L_{W_{0}}(z,z') \geq L_{W_{0}}(z,x_{c}^{1}) + L_{W_{0}}(x_{e}^{1},x_{1}^{2})$$

$$\geq L_{T_{1}}(z,x_{c}^{1})$$

$$\geq d$$

By the choice of Q_1 and x_1^1 , it follows that

$$d=d_{W_0}(x_1^1) \ge d_{W_0}(z)$$

for each $z \in Z$.

(iii) When d=1, T₁ is a single edge (x_1^1, x_2^1) . Hence, x_1^1 is a degree one vertex of W_0 and x_2^1 is either a cut-vertex of W_0 if $W_0 \nmid T_1$, or a degree one vertex of W_0 if $W_0 = T_1$. If $W_0 = T_1$, then let $Z = \{x_1^1, x_2^1\}$. If

 $W_0 \setminus T_1 \neq \emptyset$, by the choice of x_1^1 , we must have that $d_{W_0}(x_1^2) \leq d_{W_0}(x_1^1)$ and x_1^2 is a degree one vertex of W_0 . Then let

$$Z = \{x_1^1, x_1^2\}.$$

Thus in either case, $d_{W_0}(z)=1$ for any $z \in \mathbb{Z}$.

So we always have that

$$|Z| = \max\{d, 2\}, \qquad (1)$$

$$L_{W_0}(z,z') \ge d,$$
 (2)

$$d_{W_0}(z) \leq d$$
 and $d_{P}(z) \geq k-d$. . . (3)

for each pair of distinct vertices z and z' of Z. And

since $d=d_{W_0}(x_1^1)=d_{T_1}(x_1^1)$.

III. We claim that $1 \le d \le k-4$.

Suppose that $d \ge k-3$. Since G is 4-connected, there are four intermediately disjoint paths $P_{\mu} = v_{i_{\mu}} \cdots v_{\mu}$ joining T_{1} and P for $\mu = 1, \cdots, 4$ where $\{v_{i_{1}}, v_{i_{2}}, v_{i_{3}}, v_{i_{4}}\}$ are distinct vertices of P,

 $0 \le i_1 < i_2 < i_3 < i_4 \le p$, $\{x_1, x_2, x_3, x_4\}$ belong to T_1 and $\{x_1, \dots, x_n\} = \min\{|T_1|, 4\}$.

Let R_{μ} be a path joining x_{μ} and $x_{\mu+1}$ in T_1 such that R_{μ} is of length at least d if $x_{\mu}^{\dagger}x_{\mu+1}$ (by Lemma 1.1), or $R_{\mu}=x_{\mu}$ if $x_{\mu}=x_{\mu+1}$. Then

$$\ell(v_{i_{\mu}}^{Pv_{i_{\mu+1}}}) \geq \ell(v_{i_{\mu}}^{P}_{\mu}^{X}_{\mu}^{R}_{\mu}^{X}_{\mu+1}^{P}_{\mu+1}^{P}_{\nu+1}) \geq d+2$$

if
$$x_{\mu}^{\dagger}x_{\mu+1}^{\dagger}$$
, or $\ell(v_{i_{\mu}}^{}Pv_{i_{\mu+1}}^{}) \ge \ell(v_{i_{\mu}}^{}P_{\mu}x_{\mu}^{}P_{\mu+1}^{}v_{i_{\mu+1}}^{}) \ge 2$

if $x_{\mu} = x_{\mu+1}$ since P is a longest path joining v_0 and v_p .

If $|T_1| \ge 4$, then $\{x_1, x_2, x_3, x_4\}$ are a set distinct vertices and

It contradicts the assumption that $\ell(P) < 3k=6$. Therefore $|T_1| \le 3$ and some x_i and x_j of $\{x_1, x_2, x_3, x_4\}$ are the same vertex. However,

$$3k-7 \ge \ell(P) \ge \sum_{\mu=1}^{3} \ell(v_{i} P v_{i}_{\mu+1})$$

$$\ge \sum_{\mu=1}^{5} \ell(v_{i} P v_{i}_{\mu+1}) + \sum_{\mu=1}^{5} \ell(v_{i} P v_{i}_{\mu+1})$$

$$\ge (d+2)(|T_{1}|-1)+2(4-|T_{1}|)$$

$$= d(|T_{1}|-1)+6$$

$$\ge d^{2}+6 \qquad (by (4))$$

$$\ge k^{2}-6k+15 \qquad (by d \ge k-3).$$

Thus $0 \ge k^2 - 9k + 22$. But the value of $K^2 - 9k + 22$ is always positive for any k. It leads a contradition and follows our claim.

IV. Now we wish to show the following inequality

$$\ell(P) \ge (k-d-1)(d+2) \qquad \qquad \bullet \bullet \bullet \bullet \qquad (5)$$

Let z,z' be a pair of distinct vertices of Z. We have known that

 $\{z,z'\} \quad \text{if either} \quad v_{\substack{i \in N(z) \\ \theta}} \quad \text{and} \quad v_{\substack{i \in N(z') \\ \theta+1}} \quad \text{or} \quad v_{\substack{i \in N(z') \\ \theta+1}} \quad \text{and} \quad v_{\substack{i \in N(z) \\ \theta+1}} \quad \epsilon_{N(z)}.$

Otherwise, it is called unextendible. It is not very hard to see that P has at least $\sigma(z,z')$ -1 extendible segments with respect to $\{z,z'\}$. Since P is a longest path joining v_0 and v_p and $L_{\widetilde{W}_0}(z,z') \geq \alpha$, each entendible segment is of length at least d+2 and each unextendible segment is of length at least two.

(i) If there is a pair of distict vertices $\{z_1,z_2\}$ of Z such that P has $\sigma(z_1,z_2)$ or $\sigma(z_1,z_2)$ or $\sigma(z_1,z_2)$ extendible segments with respect to $\{z_1,z_2\}$ then one of $\{N_p(z_1),N_p(z_2)\}$ must be a subset of another one and

$$S^{(z_1, z_1)}$$
 $V_p(z_1) |, |N_p(z_2)| \ge k-d.$

Thus we have established the inequality (5) in this case, and therefore we will assume that P has at least $\alpha(z,z')+1$ extendible segments with respect to any pair of distinct vertices $\{z,z'\}$ of Z.

(ii) Case 1.
$$d \le \frac{k}{2}$$

Let $\sigma = \max \left\{ \sigma(z,z') \mid z,z' \text{ are a pair of distinct vertices of } Z \right\}$. Choose a pair of distinct vertices z_1 and z_2 of Z such that $\sigma(z_1,z_2) = \sigma$ and let $r = |N_p(z_1) \cup N_p(z_2)|$. It is clear that

$$r+\sigma = |N_p(z_1)| + |N_p(z_2)| \ge 2(k-d)$$
 (6)

$$r = \sum |N_{D}(z_{1})| \ge k - d \qquad (7)$$

Since P has at least $\sigma + 1$ entendible segments with respect to $\{z_1, z_2\}$, we have that

 $L(P) \ge (\text{total length of all extendible segments with}$ respect to $\{z_1, z_2\}$ +

(total length of all unextendible segments with respect to $\{z_1,z_2\}$)

$$\geq$$
 (d+2)(σ +1) + 2[(r -1)-(σ +1)]

 $= 2r + \sigma d + d - 2$

$$\geq$$
 2[2(k-d)- σ] + σ d + d - 2 (since $r \geq 2(k-d) - \sigma$ by (6))

$$= 4k-4d - 2\sigma + \sigma d + d - 2$$

$$= (4k-2d) -2d + (\sigma+1)(d-2)$$

$$\geq$$
 3k - 2d + (σ +1)(d-2) (since d $\leq \frac{k}{2}$)

Thus
$$3k - 7 \ge l(P) \ge 3k - 2d + (\sigma+1)(d-2)$$
 (8)

if $\sigma \geq 1$, by (8), we have that

$$3k - 7 \ge 3k - 2d + 2(d-2)$$

= $3k - 4$.

It is a contradiction and hence we have that $\sigma=0$. If $d\leq 4$, by (8), we have that

$$3k - 7 \ge l(P) \ge 3k = 2d + (d-2)$$
 (since $g=0$)
 $\ge 3k - 6$ (since $d \le 4$).

It is also a contradiction and therefore we must have that $d \ge 5$. Note that $|Z| \ge d \ge 5$, let z,z',z'' be three distinct verticies of Z. By the

definition of $\,\sigma\,$ and $\,\sigma$ =0, the subsets $\,N_{\,p}(z)\,,\,N_{\,p}(z^{\,\prime})$ and $\,N_{\,p}(z^{\,\prime\prime})$ of $\,V(\,P)\,$

are pairwise disjoint. Hence

$$|N_{p}(z) \cup N_{p}(z') \cup N_{p}(z'')| \ge 3(k-d)$$

and P has at least 3(k-d)-1 segments each of which is of length at least two. So

$$\ell(P) \ge 2[3(k-d)-1]$$

= $6k - 6d - 2$
 $\ge 3k - 2$ (since $d \le \frac{k}{2}$).

It contradicts that $\ell(P) \leq 3k - 7$.

(iii) Case 2. $d \ge \frac{k}{2}$.

Let C=E(Z,P)

be a set and

$$\{A_z = E(z, P): \text{for each } z \in Z\}$$

and $\{B_i = E(Z, v_i): for each v_i \in V(P)\}$

be partitions of C. Note that $|\{A_Z\}| = |Z| = d \ge k-d$ and $|A_Z| = d_p(z) \ge k-d$ for any $z \in Z$ (by (3)), $|A_Z \cap B_i| \le 1$ for any $z \in Z$ and $v_i \in V(P)$. We can apply Lemma 1.2 on C and these two partitions of C. Thus P has at least k-d-1 extendible segments each of which is of length at least d+2 and therefore

$$\ell(P) \ge (\text{total length of all entendible segments})$$

 $\ge (d+2)(k-d-1)$

and the inequality (5) holds for all cases.

V. Since $1 \le d \le k-4$, the minimum value of (d+2)(k-d-1) is 3k-6 it contradicts that $\ell(P) < 3k-6$ and therefore, $G\setminus V(P)$ is an independent set.

Part two.

It has been shown in part one that W=G\V(P) is an independent set. Let w W. Following [5], put $Y_0=\phi$ and for $i\geq 1$, put

$$X_{i}=N(Y_{i-1}\cup\{W\})$$

and $Y_i = \{v_j \in V(P): v_{j-1} \in X_i \text{ and } v_{j+1} \in X_i\}$

Thus $N(w)=X_1\subseteq X_2$ ··· and $\phi=Y_0\subseteq Y_1\subseteq Y_2$ ··· .

Put $X = \bigcup_{i=1}^{\infty} X_i$ and $Y = \bigcup_{i=1}^{\infty} Y_i$. The follow lemma has been proved in [6] and will be applied in this part of the proof.

LEMMA 2.1.

- (i) (direct conclusion of the definition) $Y\subseteq V(P)\setminus \{v_0, v_p\}$ and $Y=(X\cap P)^{+1}U(X\cap P)^{-1}.$
 - (ii) (Lemma 4.4. [6]) X does not contain two consecutive vertices of P.
 - (iii) (Lemma 4.4. [6]) $X \cap Y = \phi$.
 - (iv) (Lemma 4.7. [6]) YUW is an indpendent set of G, $N(Y)\subseteq V(P)$ and $N(Y\cup \{w\})=X\subseteq V(P)$.
 - (v) $e(X,Y\cup\{w\})=k(|Y|+1)$ and $e(V',Y\cup\{w\})=0$ for any subset V' of $V(G)\setminus X$.

Proof. We only need to prove (v). By (i) $v_0, v_p \notin Y \cup \{w\}$, it follows that d(u) = k for any $u \in Y \cup \{w\}$. Since $X = N(Y \cup \{w\})$, $e(Y \cup \{w\}, X) = e(Y \cup \{w\}, G) = k \mid Y \cup \{w\} \mid A \cap Y \cup \{w\}) \cap Y' = \emptyset$ for any subset Y' of $Y(G) \setminus X$.

Put $|X| = \chi$ and $|Y| = \psi$. Then P\XuY is a union of at most $\chi = \psi + 1$ segments of P. Let S_1, \dots, S_{t-1} be the segments of P\XuY not containing v_0 and v_p . Let S_0 (or S_t) be the segment of P\XuY containing v_0 (or v_p , respectively) if v_0 (or v_p , respectively) does not belong to X. Obviously, $S_0 = \phi$ (or $S_t = \phi$) if $v_0 \in X$ (or $v_p \in X$, respectively). It is easy

to see that $|S_i| \ge 2$ for $1 \le i \le t-1$ and $t=\chi-\psi$. Let $S= \bigcup_{i=0}^{t} S_i$. Here

Here $V(P)=X\cup Y\cup S$, by (i) and (iv) of Lemma 2.1.

Case 1. $S \neq \phi$.

Let $Z_i = S_i \cap (X^{+1} \cup X^{-1})$ and $Z = \bigcup_{i=0}^{t} Z_i$. We have that

LEMMA 2.2 (Lemma 4.8, [6])

$$e(Z,S) \leq (t-\lambda)(|S|-t+3)$$

where $\lambda=0$ if $S_0 \cup S_t \neq \phi$ and $\lambda=1$ if $S_0 \cup S_t = \phi$.

and

LEMMA 2.3 (Lemma 4.9, [6])

$$e(X,W\setminus\{w\}) \geq e(Z,W\setminus\{w\}).$$

Now we can prove our theorem in this case. Since

$$k\chi \ge e(X,G) \ge e(X,Z)+e(X,Y\cup\{w\})=e(X,W\setminus\{w\})$$

and

$$k \mid Z \mid =e(Z,G)=e(Z,X)+e(Z,Y\cup\{w\})+e(Z,S)+e(Z,W\setminus\{w\}),$$

we have that

$$k_X - e(X, Y_U\{w\}) - e(X, W\setminus\{w\}) \ge e(X, Z)$$

$$= e(Z, X)$$

$$= k \mid Z \models e(Z, S) = e(Z, W\setminus\{w\}) - e(Z, Y_U\{w\}).$$

Thus

by (v) of Lemma 2.1. Note that $\chi - \psi = t$ and

$$e(X,W\setminus\{w\}) > e(Z,W\setminus\{w\})$$

(by Lemma 2.3), it follows that

$$e(Z,S) > -kt+k+k \mid Z \mid$$
.

When $S_0 \cup S_t \neq \phi$, $|Z| \geq 2t-1$. By Lemma 2.2,

$$t(|S|-t+3) > -kt+k+k(2t-1).$$

Simplifying the above inequality, we have that

$$|S| \ge t - 3 + k. \tag{9}$$

When $S_0 \cup S_t = \phi$, |Z| = 2(t-1). By Lemma 2.2,

$$(t-1)(|S|-t+3) \ge -kt+k+2k(t-1)$$
.

Simplifying the above inequality, we obtain the inequality (9) again. Since $V(P)=S\cup X\cup Y$, and $t+4=\chi \geq |N(w)|=k$,

It contradicts that $\ell(P) < 3k-6$ and therefore the path joining v_0 and v_p

is of length at least 3k-6 in the case of $S \neq \phi$.

Case two. $S=\phi$. In this case, we must have p=l(P) is even and

$$X = \left\{ v_{2i} : i = 0, \cdots, \frac{p}{2} \right\}, \quad Y = \left\{ v_{2i-1} : i = 1, \cdots, \frac{p}{2} \right\}. \quad \text{Thus} \quad \left| Y \cup \left\{ w \right\} \right| = \left| X \right|. \quad \text{We claim}$$

that X is also an independent set and $N(X)\subseteq Y\cup \{w\}$. By (v) of Lemma 2.1, we have that

$$e(Y \cup \{w\}, X) = k \mid Y \cup \{w\} \mid = k \mid X \mid$$
.

Since the maximum degree of G is k, all neighbors of every vertex of X are contained in $Y \cup \{w\}$.

Moreover, by (iv) of Lemma 2.1, both X and $Y_{U}\{w\}$ are independent sets and

$$E(X,Y\cup\{w\})=E(X,G)=E(G,Y\cup\{w\}).$$

The connectivity of G implies that $V(G)=X\cup Y\cup \{w\}$. Thus $(X,Y,\{w\})$ is a bipartition of G and v_0,v_0 are joined by a path of length |V(G)|-2.

REFERENCES

- [1]. Bollobas, B. and Hobbs, A. M., Hamiltonian cycles in regular graphs, in "Advances in Graph Theory", North Holland, Amsterdam, 1978.
- [2] Erdos, P. and Hobbs, A. M., Hamiltonian cycles in regular graphs of moderate degree, J. Combinatorial Theory, B. 23(1977) p.139-142.
- [3]. Fan, G., Longest cycle in regular graphs, J. Combinatorial Theory, B.39 (1985) p.325-345.
- [4]. Jackson, B., Hamilton cycles in regular 2-connected graphs, J. Combinatorial Theory, B. 29 (1980), p.27-46.
- [5]. Woodall, D. R., The binding number of a graph and its Anderson number, J. Combinatorial Theory, B. 15 (1973), p.225-255.
- [6]. Zhang, C. Q. and Zhu, Y. J., Hamiltonian connectivity and factorization.
- [7] Zhu, Y. J., Liu, Z. H., and Yu, Z. G., 2-connected k-regular graphs on at most 3k+3 vertices to be Hamiltonian, J. System Sciences & Math. Sciences, 6(1986), p.36-49, p.136-145.

fig. 1.